Subconvexity and Equidistribution of Heegner Points in the Level Aspect

نویسندگان

  • SHENG-CHI LIU
  • RIAD MASRI
  • MATTHEW P. YOUNG
چکیده

Let q be a prime and −D < −4 be an odd fundamental discriminant such that q splits in Q( √ −D). For f a weight zero Hecke-Maass newform of level q and Θχ the weight one theta series of level D corresponding to an ideal class group character χ of Q( √ −D), we establish a hybrid subconvexity bound for L(f×Θχ, s) at s = 1/2 when q D for 0 < η < 1. With this circle of ideas, we show that the Heegner points of level q and discriminant D become equidistributed, in a natural sense, as q,D →∞ for q ≤ D1/20−ε. Our approach to these problems is connected to estimating the L-restriction norm of a Maass form of large level q when restricted to the collection of Heegner points. We furthermore establish bounds for quadratic twists of Hecke-Maass L-functions with simultaneously large level and large quadratic twist, and hybrid bounds for quadratic Dirichlet L-functions in certain ranges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Equidistribution Problems , Period Bounds

We introduce a “geometric” method to bound periods of automorphic forms. The key features of this method are the use of equidistribution results in place of mean value theorems, and the systematic use of mixing and the spectral gap. Applications are given to equidistribution of sparse subsets of horocycles and to equidistribution of CM points; to subconvexity of the triple product period in the...

متن کامل

Equidistribution of Heegner Points and Ternary Quadratic Forms

We prove new equidistribution results for Galois orbits of Heegner points with respect to reduction maps at inert primes. The arguments are based on two different techniques: primitive representations of integers by quadratic forms and distribution relations for Heegner points. Our results generalize one of the equidistribution theorems established by Cornut and Vatsal in the sense that we allo...

متن کامل

Hyperbolic Distribution Problems on Siegel 3-folds and Hilbert Modular Varieties

We generalize to Hilbert modular varieties of arbitrary dimension the work of W. Duke [14] on the equidistribution of Heegner points and of primitive positively oriented closed geodesics in the Poincaré upper half plane, subject to certain subconvexity results. We also prove vanishing results for limits of cuspidal Weyl sums associated with analogous problems for the Siegel upper half space of ...

متن کامل

Subconvexity for Rankin-selberg L-functions of Maass Forms

This is a joint work with Yangbo Ye. We prove a subconvexity bound for Rankin-Selberg L-functions L(s, f⊗g) associated with a Maass cusp form f and a fixed cusp form g in the aspect of the Laplace eigenvalue 1/4 + k2 of f , on the critical line Res = 1/2. Using this subconvexity bound, we prove the equidistribution conjecture of Rudnick and Sarnak on quantum unique ergodicity for dihedral Maass...

متن کامل

Equidistribution of Heegner points and the partition function

Let p(n) denote the number of partitions of a positive integer n. In this paper we study the asymptotic growth of p(n) using the equidistribution of Galois orbits of Heegner points on the modular curve X0(6). We obtain a new asymptotic formula for p(n)with an effective error termwhich is O(n−( 1 2+δ)) for some δ > 0.We then use this asymptotic formula to sharpen the classical bounds of Hardy an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012